 In geometry, a rotation is a change in \qquad .

A rotation NOT a change \qquad and a rotation is not a \qquad .

- Types of Rotations

There are two types of rotations:

- Degrees of Rotations

Since rotations move in a circular direction, rotations are measured in degrees ranging from zero to \qquad .

Negative rotations move in a clockwise direction.

Positive rotations move in a counter-clockwise direction.

- Notation: A rotation of a figure is a \qquad movement around a fixed point.

Example: This notation denotes a rotation of positive 90 degrees.

COUNTER-CLOCWISE ROTATIONS

> Example 01:
Perform the following rotation on point C: \boldsymbol{R}_{90}
You have to rotate the point \qquad degrees in a \qquad direction.

> Example 02:
Perform the following rotation on point C: \boldsymbol{R}_{180}
You have to rotate the point \qquad degrees in a \qquad direction.

> Example 03:

Perform the following rotation on point c: $\boldsymbol{R}_{\mathbf{2 7 0}}$

You have to rotate the point \qquad degrees in a \qquad direction.

Counter-Clockwise Rotation Rules:

CLOCWISE ROTATIONS
 Example 01:

Perform the following rotation on point D: $\boldsymbol{R}_{\mathbf{-}} \mathbf{9 0}$
You have to rotate the point \qquad degrees in a \qquad direction.

> Example 02:
Perform the following rotation on point D: \boldsymbol{R}_{-180}
You have to rotate the point \qquad degrees in a \qquad direction.

> Example 03:
Perform the following rotation on point D: \boldsymbol{R}_{-270}
You have to rotate the point \qquad degrees in a \qquad direction.

$$
D^{\prime}(\square, \quad \text { _ }
$$

Clockwise Rotation Rules:

$\xrightarrow{R\left(P^{0}(-y, x)\right.}$

Rotate a Line Segment

- Example 01:

Construct the image of $\overline{E^{\prime} F^{\prime}}$ after a clockwise rotation of 90 degrees about the origin.
$P \square$

E'
F' (_ \qquad

Rotate a Figure

> Example 01:

Perform the following transformation on $\triangle L M K$:
\boldsymbol{R}_{180}

