\qquad

Lesson Guide

This lesson guide accompanies the following video lesson:

Geometry Transformations: Dilations

In geometry, dilation is a \qquad or a \qquad of an image.

A dilation is NOT a change \qquad or \qquad .

- Scale Factor

Notation: When dilating an image with a scale factor \mathbf{K} :

Scale Factor: The scale factor \mathbf{K} will determine whether a dilation results in an image getting larger (stretch) or smaller (shrink).

When the scale factor $K=1$, the image is unchanged.

When the scale factor $K>1$, the image is stretched to a larger size.

When the scale factor $0<K<1$, the image shrinks to a smaller size. K can not equal zero or a negative number.

> Example 01:
Perform the following dilation on \triangle OMG: $\boldsymbol{D}_{\mathbf{2}}$
In this example, the scale factor is \qquad . Since K \qquad 1, the figure will be
\qquad to a larger size.

O' \qquad
\qquad) , M' (\qquad , \qquad , $\mathbf{G}^{\prime}($ \qquad , \qquad

- Example 02:

Perform the following dilation on $\triangle \mathrm{OMG}: \boldsymbol{D}_{\frac{\mathbf{1}}{\mathbf{3}}}$
In this example, the scale factor is \qquad . Since K \qquad 1, the figure will be
\qquad to a larger size.

M' \qquad , \qquad), A' (\qquad , \qquad), S' (\qquad , \qquad), $\mathrm{H}^{\prime}($ \qquad , \qquad

