Name:

mashup math

Lesson Guide

This lesson guide accompanies the following video lesson:

Isosceles Triangle Proofs and CPCTC

Practice Proof #1

CPCTC = Corresponding Parts of Congruent Triangles are Congruent

Pro Tip: Used colored pens/pencils and highlighters to help you label the diagrams!

STATEMENTS	REASONS

STATEMENTS	REASONS

Answer Key

#1

statements	reasons
$\overline{AB} \cong \overline{AC}$	given
\overline{AD} bisects \overline{CB} at D	given
$\overline{CD} \cong \overline{BD}$	Def. of Segment Bisector
$\overline{AD} \cong \overline{AD}$	reflexive
$\Delta ACD \cong \Delta ABD$	SSS
$\angle C \cong \angle B$	CPCTC

#2

statements	reasons
$\overline{GH}\cong\overline{FJ}$	given
$\angle EHG \cong \angle EJF$	given
$\overline{HJ}\cong\overline{HJ}$	reflexive
$\overline{GH} + \overline{HJ} = \overline{JF} + \overline{HJ} \Rightarrow \overline{GJ} \cong \overline{FH}$	addition postulate
∠EHG & ∠EHJ and ∠EJF & ∠EJH are supplementary	Linear Pairs are Supplementary
$\angle EHJ \cong \angle EJH$	Linear Pairs of congruent angles are congruent
∆ <i>EHJ</i> is isosceles	Base Angle Theorem
$\overline{EH}\cong\overline{EJ}$	Def. of Isosceles Triangle
$\Delta GEJ \cong \Delta FEH$	SAS