\qquad

Lesson Guide

This lesson guide accompanies the following video lesson:

Isosceles Triangle Proofs and CPCTC

Side-Side-Side

Angle-Side-Angle

Hypotenuse-Leg HL

Side-Angle-Side SAS
Angle-Angle-Side

Practice Proof \#1

CPCTC = Corresponding Parts of Congruent Triangles are Congruent

Pro Tip: Used colored pens/pencils and highlighters to help you label the diagrams!

Given: $\overline{\boldsymbol{A B}} \cong \overline{\boldsymbol{A C}}$
$\overline{A D}$ bisects $\overline{C B}$ at D
Prove: $\angle C \cong \angle B$

STATEMENTS	REASONS

Given: $\overline{G H} \cong \overline{F J}$

$$
\angle E H G \cong \angle E J F
$$

Prove: $\triangle G E J \cong \triangle F E H$

STATEMENTS	REASONS

\#1

statements	reasons
$\overline{\boldsymbol{A B}} \cong \overline{\boldsymbol{A C}}$	given
$\overline{\mathrm{AD}}$ bisects $\overline{\mathrm{CB}}$ at D	given
$\overline{\boldsymbol{C D}} \cong \overline{\boldsymbol{B}}$	Dei. of Segment Bisector
$\overline{\boldsymbol{A D}} \cong \overline{\boldsymbol{A D}}$	reflexive
$\triangle A C D \cong \triangle A B D$	SSS
$\angle C \cong \angle B$	CPCTC

\#2

statements	reasons
$\overline{\boldsymbol{G H}} \cong \overline{\boldsymbol{F J}}$	given
$\angle E H G \cong \angle E J F$	given
$\overline{\boldsymbol{H}} \cong \overline{\boldsymbol{H J}}$	reflexive
$\overline{G H}+\overline{H J}=\overline{J F}+\overline{H J} \Rightarrow \overline{G J} \cong \overline{F H}$	addition postulate
$\angle E H G \& \angle E H$ and $\angle E J F \& \angle E J H$ are supplementary	Linear Pairs are Supplementary
$\angle E H J \cong \angle E J H$	Linear Pairs of congruent angles are congruent
$\triangle E H J$ is isosceles	Base Angle Theorem
$\overline{\boldsymbol{E H}} \cong \overline{\boldsymbol{E J}}$	Def. of Isosceles Triangle
$\triangle G E J \cong \triangle F E H$	SAS

