Name: \qquad Date: \qquad
Arc Length \& Sector Area

	ARC LENGTH	SECTOR AREA
Formula	$l=\frac{\theta \times r \times \pi}{180}$	$A=\frac{\theta}{2} r^{2}$ (in radians), or
When to Use	$A=\frac{\theta}{360} r^{2}$ (in degrees)When finding the length of an arc (a portion of the circumference) given the angle (θ) and the radius (r).	When finding the area sector (or portion of) a circle.
Diagram		

SAMPLE PROBLEM: Find the length of arc $A B$ and the area of the shaded region

GIVE AN EXACT ANSWER AND IN TERMS OF π.

$A R C$ LENGTH	SECTOR AREA
	$A=\frac{\theta}{2} r^{2}$ (in radians), or
$l=\theta \times \frac{\pi}{180} \times r$	$A=\frac{\theta}{360} r^{2}$ (in degrees)

PRACTICE PROBLEMS: Find the ARC LENGTH and SECTOR AREA of each of the following:

PROBLEM	ARC LENGTH	SECTOR AREA
1.) $\theta=$ $r=$ $r^{2}=$	In terms of π : Exact Answer:	In terms of $\boldsymbol{\pi}$: Exact Answer:
2.) $\begin{aligned} & \theta= \\ & r= \\ & r^{2}= \end{aligned}$	In terms of π : Exact Answer:	In terms of $\boldsymbol{\pi}$: Exact Answer:

PROBLEM	ARC LENGTH	SECTOR AREA
3.)		
	In terms of π :	In terms of π :
$\theta=$		
$r=$	Exact Answer:	Exact Answer:
$r^{2}=$		
4.)		
	In terms of π :	In terms of π :
$\theta=$		
$r=$	Exact Answer:	Exact Answer:
$r^{2}=$		
5.)		
	In terms of π :	
$\theta=$	Exact Answer:	Exact Answer:
$r=$		
$r^{2}=$		

PROBLEM	ARC LENGTH	SECTOR AREA
6.)	In terms of π :	In terms of π :
$\theta=$		
$r=$	Exact Answer:	Exact Answer:
$r^{2}=$		
7.)	In terms of π :	In terms of π :
$\theta=$		
$r=$	Exact Answer:	Exact Answer:
$r^{2}=$		
8.)	In terms of π :	In terms of π :
$r=$	Exact Answer:	
$r^{2}=$		Exact Answer:

\qquad

If you do not try, then you can never learn!

$A R C$ LENGTH	SECTOR AREA	CIRCUMFERENCE \& AREA
	$A=\frac{\theta}{2} r^{2}$ (in radians), or	$C=\pi d$
$l=\theta \times \frac{\pi}{180} \times r$	$A=\frac{\theta}{360} r^{2}$ (in degrees)	$A=\pi r^{2}$

1.) What is the length of the line connecting the points $(-4,2)$ and ($10,-2$)?

ROUND ANSWER TO THE NEAREST WHOLE NUMBER.

My Answer: \qquad
2.) What is the circumference of a circle with a radius of 12 feet?

My Answer: \qquad
3.) What is the area of a circle with a diameter of 21 yards?

My Answer: \qquad
4.) What is the length of arc $A B$ in the circle below (leave answer in terms of pi)?

My Answer: \qquad
5.) Carlos operates a pizzeria in Chicago. If the diameter of a large pie at his restaurant is 24 inches, what would be the area of one slice (if every pizza is cut into 8 equal slices)?
ROUND ANSWER TO THE NEAREST TENTH OF AN INCH.

\qquad
\qquad

DATE: \qquad

GEOMETRY HOMEWORK

1.) What is the apparent slope of the given line?

My Answer: \qquad
3.) What is the area of the given circle (use $\pi=3.14$ if you do not have a graphing calculator)?

My Answer: \qquad
5.) What is the area of the shaded region in the circle below (leave you answer in terms of pi).

My Answer: \qquad
\qquad

Topic Review: Perpendicular Lines

Model Problems:

Example \#1:

Which of the following lines would be perpendicular to the line $y=\frac{6}{7} x+2$?
a) $y=-\frac{6}{7} x+3$
b) $y=\frac{6}{7} x-5$
c) $y=-\frac{7}{6} x-5$
d) $y=\frac{7}{6} x+2$

PRACTICE PROBLEMS:

1.) Write the negative reciprocal of each of the following slopes:

$\frac{2}{3}$	$-\frac{4}{5}$	$\frac{6}{8}$	-3	$-\frac{1}{4}$
5	$-\frac{1}{3}$	$\frac{5}{3}$	$-\frac{12}{13}$	1

2.) Match each line with the letter of the line that would be perpendicular to it.
1.) \qquad A) $y=-3 x+8$
2.) \qquad $y=-\frac{8}{7} x-2$
B) $y=\frac{1}{3} x-1$
3.) \qquad $y=4 x+1$
C) $y=-\frac{3}{2} x+8$
4.) $\quad y=\frac{1}{3} x+4$
D) $y=\frac{7}{8} x+13$
5.) \qquad $y=-3 x-3$
E) $y=-\frac{1}{4} x$

For each of the following graphs construct a line through the point that is PERPENDICULAR to the given line:

